
SDSoC Technical Seminars 2016

Feb 2016

© Copyright 2015 Xilinx
.

Zynq SoC and MPSoC Architecture
SDSoC Overview
Real-life Success
C/C++ to Optimized System
Targeting Your Own Platform
Next Steps

Agenda

Page 2

© Copyright 2015 Xilinx
.

Zynq SoC and MPSoC Architecture
SDSoC Overview
Real-life Success
C/C++ to Optimized System
Targeting Your Own Platform
Next Steps

Agenda

Page 3

© Copyright 2015 Xilinx
.

Zynq-7000: The First All Programmable SoC

Innovative ARM + FPGA architecture on a single die

Reduce BOM cost by replacing multiple chips with a single Zynq

Security through single chip solution and secure boot

Remove off-chip communication bottleneck

Architecture optimize for power

Delivering Future Generations of Smarter and Optimized SoCs

Zynq®-7000 SoC

Page 4

© Copyright 2015 Xilinx
.

Zynq®-7000 Architeture

Page 5

© Copyright 2015 Xilinx
.

Success Story 1: Automotive ADAS Platform

Integrated into a single
monolithic device
– Sensing domain
– Environmental characterization
– Decision-making features

Page 6

© Copyright 2015 Xilinx
.

Success Story 2: 1080p60 HD Medical Endoscope

Integrated into a single
monolithic device
– Camera unit control
– 1080p60 image processing
– Hardware acceleration of complex

video analytics

Page 7

© Copyright 2015 Xilinx
.

Industry Trends and Customer Challenges

Packet Processing & Transport

Video and Vision

Cloud and Data Center

Industrial loT

Wireless

 > 400G OTN
Video Over IP

Software Defined Networks
Network Function Virtualization

 LTE Advanced
Cloud-RAN

Early 5G
Heterogeneous Wireless Networks

 8K/4K Resolution
 Immersive Display

Augmented Reality
Video Analytics

Acceleration
Big Data

Software Defined Data Center
Public and Private Cloud

Machine to Machine
Sensory Fusion

 Industry 4.0
Cyber-Physical

Embedded Vision

Performance &
Power Scalability

System Integration &
Intelligence

Security, Safety &
Reliability

1

2

3

Page 8

© Copyright 2015 Xilinx
.

Introducing UltraScale+™ MPSoC

Zynq®
All

Programmable

MPSoC

Page 9

© Copyright 2015 Xilinx
.

Zynq® UltraScale+ MPSoC System Features

Page 10

© Copyright 2015 Xilinx
.

Zynq® UltraScale+™ MPSoC Applications

Page 11

© Copyright 2015 Xilinx
.

Zynq SoC and MPSoC Architecture
SDSoC Overview
Real-life Success
C/C++ to Optimized System
Targeting Your Own Platform
Next Steps

Agenda

Page 12

© Copyright 2015 Xilinx
.

Scaling Productivity with Technology Advancement

Performance / Watt & ‘Any to Any’ Connectivity

E
as

e
of

 D
ev

el
op

m
en

t

CPU

Zynq SoC &
MPSoC

GPU
ARM SoCs

& DSPs

Zynq SoC &
MPSoC

HLS

Page 13

© Copyright 2015 Xilinx
.

Programmable Logic (PL)Processing System (PS)

Typical Zynq Development Flow

APP(){

funcA();

funcB();

funcC();}

HW-SW partition?

funcA funcB, funcC

HW-SW Connectivity?

funcA funcB, funcC
Datamover

PS-PL interfaces
SW driversEx

pl
or

e
op

tim
al

 a
rc

hi
te

ct
ur

e

Page 14

© Copyright 2015 Xilinx
.

Before SDSoC: Connectivity Exploration

PL

PS

ApplicationSDKC/C++

DriverSDK, OS ToolsC

IP IntegratorIPI project Datamover
PS-PL interface

IPVivadoHLS
Verilog, VHDL

HW-SW partition
spec

Met
Req

?

Need to modify multiple levels of design entry
Page 15

© Copyright 2015 Xilinx
.

Before SDSoC: HW-SW Partition Exploration

PL

PS

ApplicationSDKC/C++

DriverSDK, OS ToolsC

IP IntegratorIPI project Datamover
PS-PL interface

IPVivadoHLS
Verilog, VHDL

HW-SW partition
spec

Met
Req

?

Involving multiple discipline to explore architecture
Page 16

© Copyright 2015 Xilinx
.

After SDSoC:

C/C++

C

IPI project

HLS
Verilog, VHDL

HW-SW partition
spec

Page 17

© Copyright 2015 Xilinx
.

After SDSoC:

C/C++

HLS
Verilog, VHDL

HW-SW partition
spec

Auto-generate SW drivers and HW connectivity

Page 18

© Copyright 2015 Xilinx
.

After SDSoC:

C/C++

Select functions
for PL

Auto-generate SW drivers and HW connectivity

Select hardware accelerator functions in GUI or
via command line and C-callable libraries

func1();<-SW
func2();<-HW
func3();<-HW

Page 19

© Copyright 2015 Xilinx
.

After SDSoC:

C/C++

Select functions
for PL

Auto-generate SW drivers and HW connectivity

Select hardware accelerator functions in GUI or
via command line and C-callable libraries

HW function calls in application C/C++ code
defines the hardware / software partitionfunc1();<-SW

func2();<-HW
func3();<-HW

Page 20

© Copyright 2015 Xilinx
.

After SDSoC: Automatic System Generation

C/C++

Select functions
for PL

PL

PS

IP

Application

Driver

SDSoC

Datamover
PS-PL interface

Met
Req

?

C/C++ to running system in hours, days

func1();<-SW
func2();<-HW
func3();<-HW

Page 21

© Copyright 2015 Xilinx
.

Base Platform

Application

Driver

Interface
IPs

Interface
IPs

Application

Driver

AXI Bus

Platform

Processing Systems (PS)

Programmable Logic (PL)

Platform: base HW system, OS, bootloaders, file system, libraries
– Processing system, memory interfaces, custom I/O, other subsystems, …

Page 22

© Copyright 2015 Xilinx
.

Complete End-to-End Flow

Application

Driver

Interface
IPs

Interface
IPs

Application

Driver

AXI Bus

C/C++ Application

Platform

Application

Driver

IP IP IP IP

Connectivity

Generated

Page 23

© Copyright 2015 Xilinx
.

A Complete Software Development Environment
C/C++ Application

DebuggerEstimator ProfilerCompiler

Proven Xilinx tools in the backend

Page 24

© Copyright 2015 Xilinx
.

User selects C/C++
functions to accelerate in
progrommable logic (PL)
C/C++ system compiler and
linker (CLI)
Easy to use Eclipse IDE
Optimized HLS libraries
Support for target Linux,
bare metal, FreeRTOS

SDSoC’s Software Programming Experience

C/C++ Development

Page 25

© Copyright 2015 Xilinx
.

Rapid system estimation
– Pre-RTL synthesis, place & route
– Fast design feedback on accelerator

network

Automated performance measurement
– Runtime measurement of cache, memory,

and bus utilization
– Combined HW-SW event trace of

accelerator network

SDSoC’s System Level Profiling

Page 26

© Copyright 2015 Xilinx
.

Full System Optimizing Compiler

Full system from C/C++
– Optimizing programmable logic fabric

cross-compiler (HLS)
– Automatic data motion network inference
– Application-specific system optimized for

latency and throughput/
– User override via C/C++ pragmas

Page 27

© Copyright 2015 Xilinx
.

Available SDSoC Platforms
Video Platforms (Externally Provided)

Board Name & Description I/O enabled

ZC702 + HDMI IO FMC HDMI in, HDMI out, PS DDR

ZC706 + HDMI IO FMC HDMI in, HDMI out, PS DDR

Smart Vision Development Kit (SVDK) Camera in, GigEV out, PS DDR
Atlas-I-Z7e + Captiva Carrier Card GigEV in, HDMI out, PS DDR
MIAMI PS DDR
Zing2 + HDMI IO FMC HDMI IN, HDMI OUT, GPIO,PS,DDR3
Snowleo SVC CMOS IN,HDMI OUT,GPIO,PS,DDR3
EMC2-Z7015 PS DDR
BORA LVDS Video Out, PS DDR
BORA Xpress LVDS Video Out, PS DDR

ZYBO
HDMI in, VGA out, buttons, switches, LEDs

Radio Platforms (Externally Provided)

Board Name & Description I/O enabled
Atlas-II-Z7x + Mosaic carrier card ADC, DAC, PS DDR
ZC706 + AD9361 SDR Systems
Development Kit ADC, DAC, PS DDR

Page 28

http://www.xilinx.com/products/boards-and-kits/1-1s0k0o.html
http://www.xilinx.com/products/boards-and-kits/1-5r8r9h.html
http://www.xilinx.com/products/boards-and-kits/1-74ku6t.html
http://www.xilinx.com/products/boards-and-kits/1-4le3z9.html
http://www.xilinx.com/products/boards-and-kits/1-7qkvqm.html
http://www.xilinx.com/products/boards-and-kits/1-44siar.html
http://www.xilinx.com/products/boards-and-kits/1-5h2gq6.html
http://www.xilinx.com/products/boards-and-kits/1-6oq5bj.html
http://www.xilinx.com/products/boards-and-kits/1-45sl7b.html

© Copyright 2015 Xilinx
.

Example 1: Matrix Multiply + Add
main(){

malloc(A,B,C);

mmult(A,B,D);

madd(C,D,E);

printf(E);

}

madd(inA,inB,out){

}

HLS C/C++

mmult(inA,inB,out){

}

HLS C/C++

A,B datamovers

AXI Bus

Platform

Application

Driver

mmult madd

Generated

D

A B C E

PS

PL

© Copyright 2015 Xilinx
.

Example 2: FIR Filter using C-callable HDL IP
main(){

malloc(A,B,C);

fir_config(A);

fir_run(B,C);

printf(C);

}

fir_config(float *coef);

fir_run(float *in, float *out);

HDL IP

A,B datamovers

AXI Bus

Platform

Application

Driver

Generated

FIR

A B C

PS

PL

© Copyright 2015 Xilinx
.

Example 3: 1080p60 Motion Detection
main(){

get_camera(A);

sobel(A,B);

diff(B,C);

…

display(out);

}

ZC702 + HDMI FMC
Platform

Image processing on the video I/Os via DDR3 memory

HDMI

AXI
PS

PL

Linux
Libraries

Application

Drivers
Stub

SDSoC
Generated

Platform

Sobel Filter

Sobel Filter

Median Filter Combo Filter HDMI

DMA
AXI-S

Diff Filter

© Copyright 2015 Xilinx
.

Example 4: DDS using direct I/O connection

32

main(){

DDS(freq, out);

txDAC(out);

}

ADI SDR
platform

AD9361

Rx

Tx

ADC

DAC
DDS

AXI
PS

PL

Direct I/O connection to the platform DAC

Linux
Libraries

Drivers
Stub

IIO Scope GUI Application

SDSoC
Generated

Platform

SDSoC Application

SDSoC
Generated

Platform

DMA
AXI-S

32

© Copyright 2015 Xilinx
.

Zynq SoC and MPSoC Architecture
SDSoC Overview
Real-life Success
C/C++ to Optimized System
Targeting Your Own Platform
Next Steps

Agenda

Page 33

© Copyright 2015 Xilinx
.

Object Recognition
main(){

get_camera(A);

auANPRTop (A,B);

display(out);

}

ZC706 + HDMI FMC
Platform

Uses HW Optimized OpenCV Libraries

HDMI

AXI
PS

PL

Linux
Libraries

Application

Drivers
Stub

SDSoC
Generated

Platform

Gaussian SVM

Threshold

DMA
AXI-S

HoG

Segmentation OCR

© Copyright 2015 Xilinx
.

Hardware Optimized OpenCV Libraries

Page 35

© Copyright 2015 Xilinx
.

Face Detection and Tracking

Camera

Uses Optimized HDL IP as a C function in SDSoC

HDMI

main(){

getCamera(A);

while (FaceFeatures){

face_detect(A,B);

}

DrawFacial(A,C);

Display;}

36

© Copyright 2015 Xilinx
.

Automatically Generated Vivado Design from
C/C++ Application

C-callable HDL IP

Zynq PS

© Copyright 2015 Xilinx
.

Zynq SoC and MPSoC Architecture
SDSoC Overview
Real-life Success
C/C++ to Optimized System
Targeting Your Own Platform
Next Steps

Agenda

Page 38

© Copyright 2015 Xilinx
.

Recommended design flow

C/C++ to Optimized System
Cross-compile C/C++

code for ARM CPU

Identify hotspots with
TCF Profiler

Select HW Functions

Estimate PerformanceOptimize accelerator
code

Optimize data
transfers and system

parallelism

Analyze Performance
with event trace

Build HW & SW and
run on hardware

© Copyright 2015 Xilinx
.

Common compute primitive for many applications, suitable for
hardware acceleration
– O(n) time for schoolbook algorithm, O(n) for more sophisticated

sequential algorithms
– Can trade space for time, but must inspect O(n) elements in DDR

Problem size: 32 x 32 matrices of float
Algorithm: schoolbook implementation

Example : Matrix Multiplication

© Copyright 2015 Xilinx
.

Output element Cij = Ai*  B*j (dot product)

*
*
*

Matrix Multiplication

A B C

r00 =
+
+

21
24
27

=

*
*
*

r01 = 11 22
+ 12 25
+ 13 28
= 906

Etc…

11 12 13
14 15 16
17 18 19

21 22 23
24 25 26
27 28 29

870

870 906 942
1086 1131 1176
1302 1356 1410* =

row

i=0

i=1

i=2

col j=0 j=1 j=2

11
12
13

Page 41

© Copyright 2015 Xilinx
.

Recommended design flow
– Profiling with TCF Profiler

C/C++ to Optimized System
Cross-compile C/C++

code for ARM CPU

Identify hotspots with
TCF Profiler

Select HW Functions

Estimate PerformanceOptimize accelerator
code

Optimize data
transfers and system

parallelism

Analyze Performance
with event trace

Build HW & SW and
run on hardware

© Copyright 2015 Xilinx
.

Recommended design flow
– Performance estimation

C/C++ to Optimized System
Cross-compile C/C++

code for ARM CPU

Identify hotspots with
TCF Profiler

Select HW Functions

Estimate PerformanceOptimize accelerator
code

Optimize data
transfers and system

parallelism

Analyze Performance
with event trace

Build HW & SW and
run on hardware

© Copyright 2015 Xilinx
.

Recommended design flow
– Optimize accelerator microarchitecture

using Vivado HLS

C/C++ to Optimized System
Cross-compile C/C++

code for ARM CPU

Identify hotspots with
TCF Profiler

Select HW Functions

Estimate PerformanceOptimize accelerator
code

Optimize data
transfers and system

parallelism

Analyze Performance
with event trace

Build HW & SW and
run on hardware

© Copyright 2015 Xilinx
.

A SDSoC programmer’s introduction to
Vivado HLS

very brief

Page 45

© Copyright 2015 Xilinx
.

SDSoC employs Vivado HLS as programmable logic cross-
compiler
– Hardware function source code shared between SDSoC and VHLS

• Requires data type consistency between VHLS and arm-gcc

– SDSoC automatically creates VHLS projects for synthesized IP blocks
– User can optionally launch HLS GUI from SDSoC

• Optimize accelerator code
• Simulate hardware function

HLS as Cross Compiler

Page 46

© Copyright 2015 Xilinx
.

The most important HLS compiler directives are familiar to
performance-oriented software programmers

Use hardware buffers to improve communication bandwidth
between accelerator and external memory
– Copy loops at the function boundary when multiple accesses required and

to burst data into local buffers

Microarchitecture Optimizations

Directives and Configurations Description

PIPELINE Reduces the initiation interval by allowing the concurrent
execution of operations within a loop or function.

DATAFLOW Enables functions and loops to execute concurrently. Avoid at the top-
level hardware function.

INLINE Inline a function to function hierarchy, enable logic optimization across
function boundaries and reduce function call overhead.

UNROLL Unroll for-loops to create multiple independent operations rather than a
single collection of operations.

ARRAY_PARTITION Partition array into smaller arrays or individual registers to increase
concurrent access to data and remove block RAM bottlenecks.

Page 47

© Copyright 2015 Xilinx
.

Loop Unrolling and Pipelining

Page 48

© Copyright 2015 Xilinx
.

Pipelined loops
– Combined with array partitioning to achieve II=1

Loop and Function Pipelining

Latency = 3 cycles

Without Pipelining

Initiation Interval = 3 cycles

RD CMP WR RD CMP WR

Loop:for(i=1;i<3;i++) {
op_Read;
op_Compute;
op_Write;

}

RD
CMP
WR

Loop Latency = 6 cycles

With Pipelining

Latency = 3 cycles

Initiation Interval = 1 cycle

RD CMP WR

RD CMP WR

Loop Latency = 4 cycles

void foo(...) {
op_Read;
op_Compute;
op_Write;

}

RD
CMP
WR

for (index_b = 0; index_b < B_NCOLS; index_b++) {
#pragma HLS PIPELINE II=1

float result = 0;
for (index_d = 0; index_d < A_NCOLS; index_d++) {

float product_term = in_A[index_a][index_d] * in_B[index_d][index_b];
result += product_term;

}
out_C[index_a * B_NCOLS + index_b] = result;

}

© Copyright 2015 Xilinx
.

Partition into multiple memories to increase concurrent access

Array Partitioning

N-1…10

(N/2-1)…10

N-1N-2…N/2

N-2…20

N-1N-3…1

N-2

2

0

N-1
N-3

…

1

block

cyclic

complete

array1[N]

Divided into blocks:
N-1/factor elements

Divided into blocks:
1 word at a time

(like “dealing cards”)

Individual elements:
Break a RAM into

registers (no “factor”
supported)

void mmult_kernel(float in_A[A_NROWS][A_NCOLS], float in_B[A_NCOLS][B_NCOLS], float out_C[A_NROWS*B_NCOLS])
{
#pragma HLS INLINE self
#pragma HLS array_partition variable=in_A block factor=16 dim=2
#pragma HLS array_partition variable=in_B block factor=16 dim=1
// snip
}

© Copyright 2015 Xilinx
.

Microarchitecture optimizations
1. Pipeline the dot-product loop with II=1 to unroll the inner loop
2. Add pipelined copy loops to local dual-port BRAMs partitioned

for parallel access

Example: Matrix Multiplication

© Copyright 2015 Xilinx
.

Recommended design flow
– Use SDSoC pragmas and memory

allocation to influence data mover selection

C/C++ to Optimized System
Cross-compile C/C++

code for ARM CPU

Identify hotspots with
TCF Profiler

Select HW Functions

Estimate PerformanceOptimize accelerator
code

Optimize data
transfers and system

parallelism

Analyze Performance
with event trace

Build HW & SW and
run on hardware

© Copyright 2015 Xilinx
.

Data mover inference based on program properties
– Transfer size
– Memory properties: physical contiguity
– Accelerator memory access patterns

Platform interface connectivity based on program properties
– Transfer size
– Memory properties: cacheability

Performance bottlenecks to avoid
– Pointer arithmetic is usually ill-suited for hardware

• Instead, burst chunks of data into FIFOs or BRAM for accelerator access

– Transferring data through cache when CPU doesn’t touch it
– Transferring cacheable memory through HP ports

System optimizations

© Copyright 2015 Xilinx
.

Microarchitecture optimizations
1. Pipeline the dot-product loop with II=1 to unroll the inner loop
2. Add pipelined copy loops to local dual-port BRAMs partitioned

for parallel access

System optimizations
1. Sequential access pragma
2. Allocate buffers in physically contiguous memory for most

efficient DMA (axidma_simple)

Example: Matrix Multiplication

© Copyright 2015 Xilinx
.

Recommended design flow
– Use event tracing to analyze performance

of accelerators and data motion network

C/C++ to Optimized System
Cross-compile C/C++

code for ARM CPU

Identify hotspots with
TCF Profiler

Select HW Functions

Estimate PerformanceOptimize accelerator
code

Optimize data
transfers and system

parallelism

Analyze Performance
with event trace

Build HW & SW and
run on hardware

© Copyright 2015 Xilinx
.

Automatic software and hardware instrumentation for performance
monitoring

Provide visibility into “higher level events” during program execution,
with finer granularity than overall run time
– Accelerator tasks
– Data transfers between accelerators and between accelerators and PS

Assist in system debugging, showing “what happened when”

Provide application-specific trace points
– e.g., depending on accelerators

Minimize impact on execution time and PL area

HW/SW Event Tracing

© Copyright 2015 Xilinx
.

Trace Example

int main(int argc, char* argv[]) {
float *A, *B, *C;

init(A, B, C);
mmult(A, B, C);

check(C);
}

main function mmult function

void mmult(float *A, float *B, float *C) {
for (int a=0; a<A_NROWS; a++)

for (int b=0; b<B_NCOLS; b++) {
float result = 0;
for (int c=0; c<A_NCOLS; c++)

result += A[a][c]*B[c][b];
C[a][b] = result;

}
}O

rig
in

al

C
od

e

Matrix Multiplication

© Copyright 2015 Xilinx
.

Trace Example

int main(int argc, char* argv[]) {
float *A, *B, *C;

init(A, B, C);
mmult(A, B, C);

check(C);
}

main function mmult function

void mmult(float *A, float *B, float *C) {
for (int a=0; a<A_NROWS; a++)

for (int b=0; b<B_NCOLS; b++) {
float result = 0;
for (int c=0; c<A_NCOLS; c++)

result += A[a][c]*B[c][b];
C[a][b] = result;

}
}

int main(int argc, char* argv[]) {
float *A, *B, *C;

init(A, B, C);
_p0_mmult_0(A, B, C);

check(C);
}

void _p0_mmult_0(float *A, float *B, float *C) {
cf_send_i(&req0, cmd);
cf_wait(req0);

cf_send_i(&req1, A);
cf_send_i(&req2, B);
cf_wait(req1);
cf_wait(req2);

}

O
rig

in
al

C

od
e

St
ub

C

od
e

Matrix Multiplication

© Copyright 2015 Xilinx
.

Trace Example

int main(int argc, char* argv[]) {
float *A, *B, *C;

init(A, B, C);
mmult(A, B, C);

check(C);
}

main function mmult function

void mmult(float *A, float *B, float *C){
for (int a=0; a<A_NROWS; a++)

for (int b=0; b<B_NCOLS; b++) {
float result = 0;
for (int c=0; c<A_NCOLS; c++)

result += A[a][c]*B[c][b];
C[a][b] = result;

}
}

int main(int argc, char* argv[]) {
float *A, *B, *C;

init(A, B, C);
_p0_mmult_0(A, B, C);

check(C);
}

O
rig

in
al

C

od
e

Tr
ac

e
C

od
e

Matrix Multiplication

void _p0_mmult_0(float *A, float *B, float *C) {
sds_trace(EVENT_START);
cf_send_i(&req0, cmd);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_wait(req0);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_send_i(&req1, A);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_send_i(&req2, B);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_wait(req1);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);
cf_wait(req2);
sds_trace(EVENT_STOP);
sds_trace(EVENT_START);

}

No change
Added IPs
- 4 AXI Stream monitors
- 1 Accelerator monitor
- Trace output infrastructure

© Copyright 2015 Xilinx
.

Add matrix addition operator to demonstrate how to construct
hardware pipelines to increase concurrent computation

SDSoC compiler will create hardware ‘direct connections’
between accelerators and between platform and accelerators
– Program dataflow analysis to ensure correct behavior
– Software synchronization automatically instrumented by the compiler

Example: Matrix Multiply-Add

© Copyright 2015 Xilinx
.

bool mmultadd(float *A, float *B, float *C,float *Ds, float *D)
{

float tmp1[A_NROWS * A_NCOLS], tmp2[A_NROWS * A_NCOLS];

for (int i = 0; i < NUM_TESTS; i++) {
mmultadd_init(A, B, C, Ds, D);

mmult(A, B, tmp1);
madd(tmp1, C, D);

mmult_golden(A, B, tmp2);
madd_golden(tmp2, C, Ds);

if (!mmult_result_check(D, Ds))
return false;

}
return true;

}

How SDSoC Compiler Maps Programs to HW/SW

Call
mmult mmult

Call
madd madd

transfer A

transfer B

transfer C

transfer D

transfer tmp1

Page 62

© Copyright 2015 Xilinx
.

Structure of generated software

How SDSoC Compiler Maps Programs to SW

Control transfer

Data transfers

Control Synchronization

Control transfer

Data transfers

Page 10

© Copyright 2015 Xilinx
.

System performance achieved through accelerator and system level
optimizations
– SDSoC compiler creates function pipelines with direct connections in hardware

Increase concurrency within accelerators using HLS directives
– Pipeline and dataflow loops, function calls, and operations
– Copy data samples into local BRAM to improve burst read/write and partition to

increase compute / memory bandwidth within accelerator
– UG902: HLS User Guide for more details

Data mover and system connectivity inference from user program
– Data mover selection based on buffer allocation, transfer payload
– System connections and driver efficiency based on program memory

properties, e.g., cacheability
– UG1027: SDSoC User Guide for more details

Summary

Page 64

© Copyright 2015 Xilinx
.

Zynq SoC and MPSoC Architecture
SDSoC Overview
Real-life Success
C/C++ to Optimized System
Targeting Your Own Platform
Next Steps

Agenda

Page 65

© Copyright 2015 Xilinx
.

Platform-Based Design

We make a clear distinction between platforms
and Software-Defined systems on chip

A platform is a base system designed for reuse
– Processing system, I/O subsystems, memory interfaces,…
– OS, device drivers, boot loaders, file system, libraries,…
– Built using standard SoC HW & SW design methodologies and tools

A software-defined SoC extends a platform with application-
specific hardware and software
– User specifies functions for programmable logic
– Compiler analyzes program and compiles into an application-specific SoC
– Hardware accelerator and data motion network
– #pragmas to assist and override compiler

© Copyright 2015 Xilinx
.

zc702_trd Platform (Targeted Reference Design)

Programmable Logic

DDR Memory

Processing System

HDMI HDMI

Platform

HD 1080p60

Platform
IPs

Platform
IPs

© Copyright 2015 Xilinx
.

Motion Detection Application SoC

Programmable Logic

DDR Memory

Processing System

HDMI HDMI

Platform

Sobel
Filter

Sobel
Filter

RGB
2YUV

Diff Median
Filter

Combiner

RGB
2YUV

YUV2
RGB

Image
Processing

HD 1080p60

Platform
IPs

Platform
IPs

Generated data movers not shown

© Copyright 2015 Xilinx
.

Creating an SDSoC Platform
IP repository

Manual
custom

board def

Vivado

SDK/HSI

Device
drivers

GIT repo

Build Linux
and Uboot

Build
Ramdisk

Uboot.elf

uImage

uramdisk

Vivado
Project files

FSBL

Bif file

Device
Tree

Platform
SW libs

PS

Platform

I/O I/O

Operating System

DTG/HSI

Build platform
hardware

Platform component

Page 69

© Copyright 2015 Xilinx
.

Creating an SDSoC Platform
IP repository

Manual
custom

board def

Vivado

SDK/HSI

Device
drivers

GIT repo

Build Linux
and Uboot

Build
Ramdisk

Uboot.elf

uImage

uramdisk

Vivado
Project files

FSBL

Platform
HW XML

Bif file

Device
Tree

Platform
SW libs

Write by hand

PS

Platform

I/O I/O

Operating SystemPlatform
SW XML

DTG/HSI

Build platform
hardware

Write and
execute SDSoC

TCL script

Platform component

SDSoC add-on

Add configs
• xilinx-apf
• CMA

Page 70

© Copyright 2015 Xilinx
.

Start from essentially any Vivado hardware system
– Zynq-7000® or Zynq-UltraSCALE+ MPSoC® processing system
– Memory interfaces, custom I/O, and other peripherals
– Set of AXI, AXI-S, clocks, resets, interrupt ports

Create TCL script
– Declare platform interfaces in a Vivado block diagram
– Generate platform hardware description XML file

SDSoC Platform Hardware

© Copyright 2015 Xilinx
.

zc702

SDSoC Platform Hardware APIs

set pfm [sdsoc::create_pfm zc702_hw.pfm]

sdsoc::pfm_name $pfm "xilinx.com" "xd" "zc702" "1.0"

sdsoc::pfm_description $pfm "Zynq ZC702 Board"

sdsoc::pfm_clock $pfm FCLK_CLK0 ps7 0 false proc_sys_reset_0

sdsoc::pfm_clock $pfm FCLK_CLK1 ps7 1 false proc_sys_reset_1

sdsoc::pfm_clock $pfm FCLK_CLK2 ps7 2 true proc_sys_reset_2

sdsoc::pfm_clock $pfm FCLK_CLK3 ps7 3 false proc_sys_reset_3

sdsoc::pfm_axi_port $pfm M_AXI_GP0 ps7 M_AXI_GP

sdsoc::pfm_axi_port $pfm M_AXI_GP1 ps7 M_AXI_GP

sdsoc::pfm_axi_port $pfm S_AXI_ACP ps7 S_AXI_ACP

sdsoc::pfm_axi_port $pfm S_AXI_HP0 ps7 S_AXI_HP

sdsoc::pfm_axi_port $pfm S_AXI_HP1 ps7 S_AXI_HP

sdsoc::pfm_axi_port $pfm S_AXI_HP2 ps7 S_AXI_HP

sdsoc::pfm_axi_port $pfm S_AXI_HP3 ps7 S_AXI_HP

for {set i 0} {$i < 16} {incr i} {

sdsoc::pfm_irq $pfm In$i xlconcat

}

sdsoc::generate_hw_pfm $pfm

© Copyright 2015 Xilinx
.

Operating systems
– Linux, bare metal, FreeRTOS

Boot loaders
– FSBL, U-Boot

Library files
– Needed for cross-compiling and linking application code
– Shared libraries must also reside in target rootfs

Platform software description metadata file
– Provides information needed to compile, link, generate SD cards, etc.
– Written by hand by platform provider

SDSoC Platform Software

© Copyright 2015 Xilinx
.

zc702

SDSoC Platform Software Description

<xd:bootFiles

xd:os="linux"

xd:bif="boot/linux.bif"

xd:readme="boot/generic.readme"

xd:devicetree="boot/devicetree.dtb"

xd:linuxImage="boot/uImage"

xd:ramdisk="boot/uramdisk.image.gz"

/>

<xd:bootFiles

xd:os="standalone"

xd:bif="boot/standalone.bif"

xd:readme="boot/generic.readme"

/>

<xd:bootFiles

xd:os="freertos"

xd:bif="boot/freertos.bif"

xd:readme="boot/generic.readme"

/>

<xd:hardware

xd:system="prebuilt"

xd:bitstream="hardware/prebuilt/bitstream.bit"

xd:export="hardware/prebuilt/export"

xd:swcf="hardware/prebuilt/swcf"

xd:hwcf="hardware/prebuilt/hwcf"

/>

<xd:libraryFiles

xd:os="standalone"

xd:libDir="arm-xilinx-eabi/lib"

xd:ldscript="arm-xilinx-eabi/lscript.ld"

/>

<xd:libraryFiles

xd:os="freertos"

xd:osDepend="standalone"

xd:includeDir="/arm-xilinx-eabi/include/freertos"

xd:libDir="/arm-xilinx-eabi/lib/freertos"

xd:libName="freertos"

xd:ldscript="freertos/lscript.ld"

/>

© Copyright 2015 Xilinx
.

Platform checklist with design guidelines

And basic datamover conformance tests

Testing Your SDSoC Platform

© Copyright 2015 Xilinx
.

Standard “memory-based I/O” platforms
– zc702, zc706, zed, zybo, microzed

Video & image processing oriented platforms
– zc702_trd, zc706_trd (separate download)
– zc702_osd, zed_osd

Additional downloads from Xilinx and partners
– Zynq base targeted reference designs (zc702_trd, zc706_trd)
– http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#boardskits

Teaching platform examples
– zc702_axis_io – direct I/O
– zc702_led – software control of platform IPs (standalone, Linux)
– zc702_acp – sharing an AXI interface between platform and sdscc

Available SDSoC Platforms

Page 76

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html%23boardskits

© Copyright 2015 Xilinx
.

Platform-based design increases productivity and encourages
design reuse
– Many applications can target a single platform
– An application can target multiple platforms

SDSoC platforms are simple extensions of standard hardware /
software systems that enable design reuse
– Hardware platform easily exported from Vivado
– Software platform built using standard flows, simple metadata file

Summary

© Copyright 2015 Xilinx
.

Zynq SoC and MPSoC Architecture
SDSoC Overview
Real-life Success
C/C++ to Optimized System
Targeting Your Own Platform
Next Steps

Agenda

Page 78

© Copyright 2015 Xilinx
.

Hands-on training with one of our Authorized Training Providers
Video Tutorials
User Guides

To further enhance your productivity, consider:
– Libraries & Design Examples
– Boards, Kits & Modules

Next Steps

Page 79

© Copyright 2015 Xilinx
.

Self-Training Material

Video Tutorials

Custom Platform Creation
Estimation & Implementation
Optimization & Debug

User Guides

UG1028
– Getting started

UG1027
– SDSoC flows, features & functions

UG1146
– Create a custom SDSoC platform

and a C-callable RTL IP Library

Page 80

© Copyright 2015 Xilinx
.

Optimized libraries
for faster
programming

Available from Xilinx
and ecosystem
partners

Libraries & Design Examples

Page 81

© Copyright 2015 Xilinx
.

System-level
solutions for
multiple
functions
including
video, radio &
control

Available from
Xilinx and
ecosystem
partners

Boards, Kits & Modules

Page 82

Backup

SDSoC Development Environment
Thank You

	Slide Number 1
	Agenda
	Agenda
	Zynq-7000: The First All Programmable SoC
	Zynq®-7000 Architeture
	Success Story 1: Automotive ADAS Platform
	Success Story 2: 1080p60 HD Medical Endoscope
	Industry Trends and Customer Challenges�
	Introducing UltraScale+™ MPSoC
	Zynq® UltraScale+ MPSoC System Features
	Zynq® UltraScale+™ MPSoC Applications
	Agenda
	Scaling Productivity with Technology Advancement�
	Typical Zynq Development Flow
	Before SDSoC: Connectivity Exploration
	Before SDSoC: HW-SW Partition Exploration
	After SDSoC:
	After SDSoC:
	After SDSoC:
	After SDSoC:
	After SDSoC: Automatic System Generation
	Base Platform
	Complete End-to-End Flow
	A Complete Software Development Environment
	SDSoC’s Software Programming Experience
	SDSoC’s System Level Profiling
	Full System Optimizing Compiler
	Available SDSoC Platforms
	Example 1: Matrix Multiply + Add
	Example 2: FIR Filter using C-callable HDL IP
	Example 3: 1080p60 Motion Detection
	Example 4: DDS using direct I/O connection
	Agenda
	Object Recognition
	Hardware Optimized OpenCV Libraries
	Face Detection and Tracking
	Automatically Generated Vivado Design from C/C++ Application
	Agenda
	C/C++ to Optimized System
	Example : Matrix Multiplication
	Matrix Multiplication
	C/C++ to Optimized System
	C/C++ to Optimized System
	C/C++ to Optimized System
	A SDSoC programmer’s introduction to Vivado HLS
	HLS as Cross Compiler
	Microarchitecture Optimizations
	Loop Unrolling and Pipelining
	Loop and Function Pipelining
	Array Partitioning
	Example: Matrix Multiplication
	C/C++ to Optimized System
	System optimizations
	Example: Matrix Multiplication
	C/C++ to Optimized System
	HW/SW Event Tracing
	Trace Example
	Trace Example
	Trace Example
	Example: Matrix Multiply-Add
	How SDSoC Compiler Maps Programs to HW/SW
	How SDSoC Compiler Maps Programs to SW
	Summary
	Agenda
	Platform-Based Design
	zc702_trd Platform (Targeted Reference Design)
	Motion Detection Application SoC
	Creating an SDSoC Platform
	Creating an SDSoC Platform
	SDSoC Platform Hardware
	SDSoC Platform Hardware APIs
	SDSoC Platform Software
	SDSoC Platform Software Description
	Testing Your SDSoC Platform
	Available SDSoC Platforms
	Summary
	Agenda
	Next Steps
	Self-Training Material
	Libraries & Design Examples
	Boards, Kits & Modules
	Slide Number 83

